

General Electric
Corporate Research & Development

Virginie Galtier Kevin Mills Yannick Carlinet

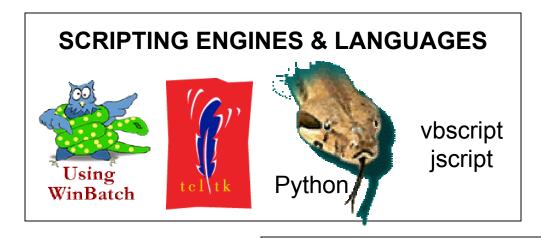
Stephen Bush Amit Kulkarni

Predicting and Controlling Resource Usage in a Heterogeneous Active Network

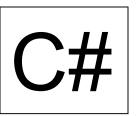
w3.antd.nist.gov/active-nets

Third Annual International Workshop on ACTIVE MIDDLEWARE SERVICES

San Francisco August 6, 2001


Outline of Presentation

- Motivations
- ❖ NIST solution to predict CPU requirements of an active packet on any node:
 - Models in brief
 - Prediction accuracy
- ❖ Application of NIST model to improve CPU-resource control in nodes
- Introduction to GE Active Virtual Network Management Prediction (AVNMP) a network load prediction system
- Enhancement of AVNMP by introduction of NIST models
- Future work



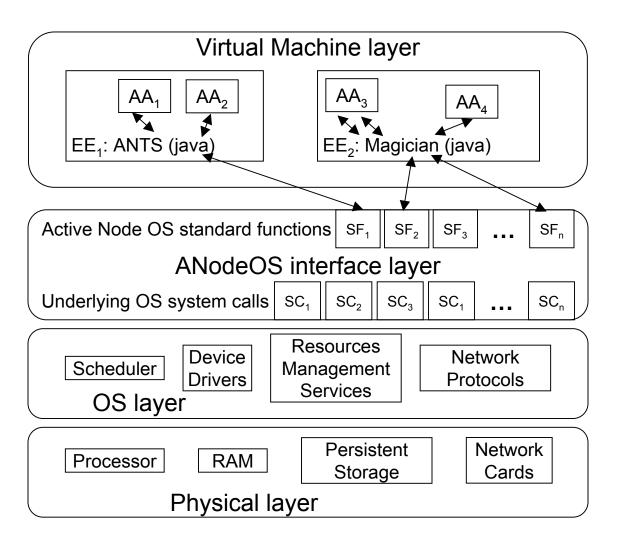
Motivations

Growing Population of Mobile Programs on Heterogeneous Platforms

dlls, dlls, and more dlls

Active Networks

Active Networks Overview

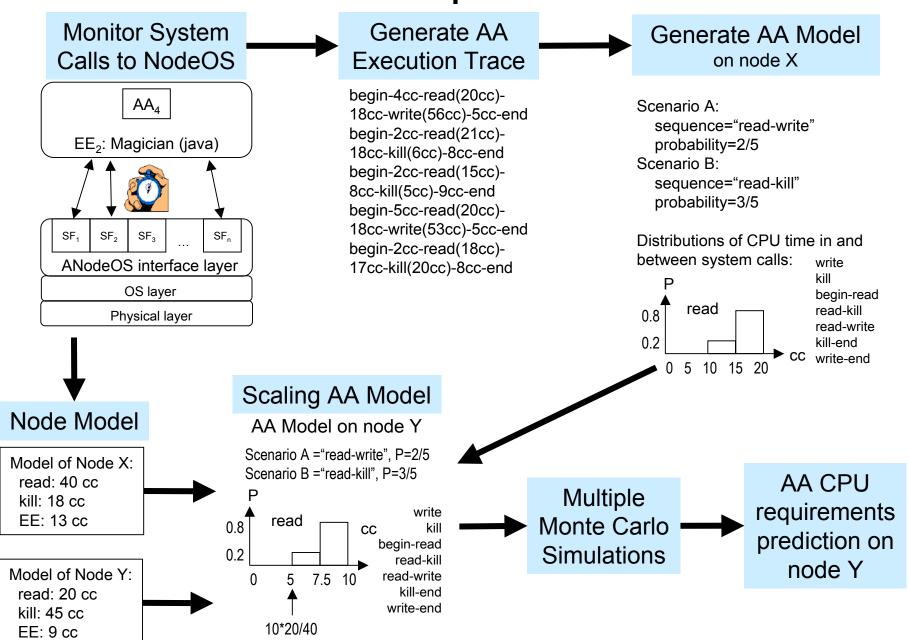

Principle: Active packets carry not only data but also the code to process them which is executed at active nodes.

Example: An application that sends MPEG packets can specify an intelligent dropping algorithm to be applied at intermediate nodes if congestion is detected.

Advantage: Fast and easy deployment of customized network services.

Motivations

Sources of Variability in Active Packet Execution Time


Motivations

Threats and Needs

Without a means to express and predict CPU cycles needed to execute an active packet:

- Packets can consume excessive CPU time on a node or a set of nodes, causing denial of services to other packets
- A node can't schedule its CPU resources to meet a packet's performance requirements or other QoS requirements
- An active application can't discover a route meeting its performance requirements
- Usage-based pricing simulations are impossible

NIST Model at a Glimpse

NIST Model Prediction Accuracy

				Predictions after scaling with speed ratio		Predictions with NIST model	
EE	AA	Node X	Node Y	Error on mean prediction	Error on high percentiles prediction	Error on mean prediction	Error on high percentiles prediction
ANTS	Ping	machine A	machine B	94	110	0.42	8
		machine D	machine C	31	19	-2	8
		machine E	machine C	23	29	-7	7
	Multicast	machine B	machine E	22	20	-2	12
		machine C	machine D	-11	11	-2	10
		machine A	machine C	226	209	5	9
Magician ·	SmartPing	machine E	machine C	34	30	-5	9
		machine B	machine C	121	103	-7	14
		machine A	machine D	287	281	-9	10
	SmartRoute	machine E	machine D	14	10	-2	24
		machine D	machine C	15	21	-5	9
		machine C	machine A	-81	81	-3	10

Improved CPU Usage Control

Sender Node (199 MHz)

Fast Intermediate Node (334 MHz)

Slow Intermediate Node (100 MHz)

Destination Node (451 MHz)

Control = Kill packets which execute above 99th percentile of active audio packet execution time

Real:

8.29 ms = 1,650,084 cc 4.76 ms = 1,589,382 cc 23.99 ms = 2,398,702 cc

Experiment #1: predictions based on execution time on sender and processor speed ratio

8.29 ms = 2,769,487 cc

8.29 ms = 829,187 cc

Average execution time per packet: (2278*M+455*8.29)/(2778+455)

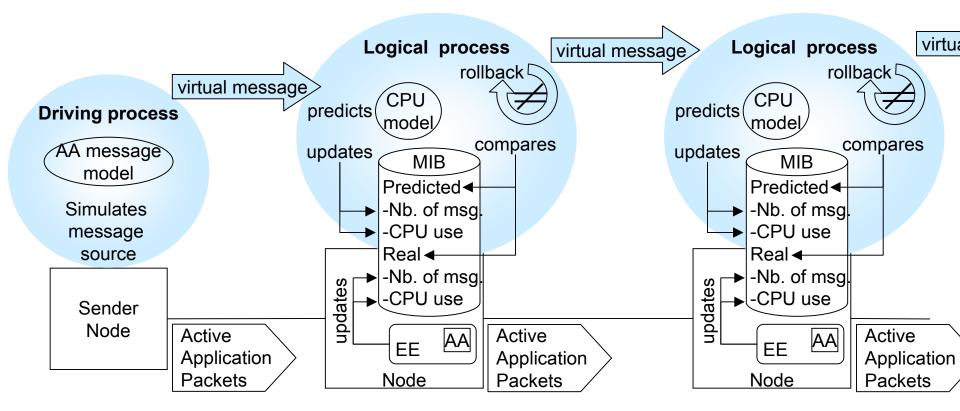
2186 good packets are killed

Experiment #2: predictions obtained with NIST model

4.76 ms

Average execution time per packet: (2278*M+455*4.76)/(2778+455)

Expected Improvement: 0.59 ms saved per packet Experimental Result: 0.63 ms saved per packet!


23.99 ms

Only 19 good packets are killed Improvement = 2167 packets saved!

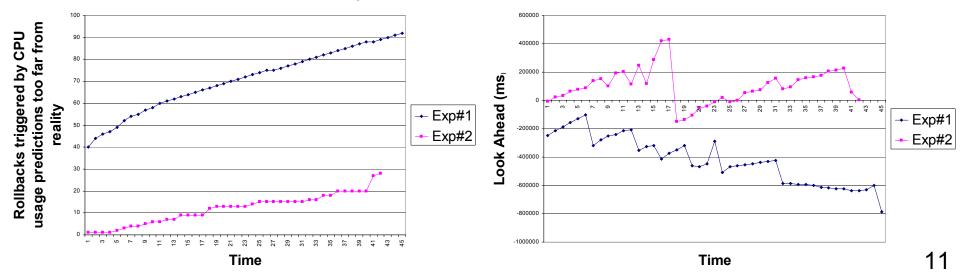
Improved Network Load Prediction

AVNMP in Brief

Overlay network simulates application traffic ahead in virtual time.

Experiment #1: CPU predictions based on average load on sender node and processor speed ratio

Experiment #2: CPU predictions obtained with NIST model


For both experiments: tolerance before rollback = 10 %.

Improved Network Load Prediction

Experimental Results

	Exp#1: sender values scaled with processor speed ratio			Exp#2: CPU prediction with NIST model		
	first intermediate node	second intermediate node	destination node	first intermediate node	second intermediate node	destination node
maximum look ahead (seconds)	-101	-20	54	432	102	313
Rollbacks	92	42	12	28	0	0

AVNMP improvement on the first intermediate node:

Future Work

Improve NIST models

- trace-based model has limitations that could be overcome
 with models that learn or with models that consider node-dependent
 conditions
- investigate prediction based on competition
- investigate alternate models: white-box model currently underway
- characterize error bounds

Improve AVNMP performance

http://w3.antd.nist.gov/active-nets